Silane-Modified Polymers (SMP) – Combining the Best of Silicone & Organic Polymers

International Silicone Conference – May 17, 2016
Michael Austerberry, PhD – Wacker Chemical Corporation
Disclaimer

The information contained in this presentation is for background purposes only and is subject to amendment, revision and updating. Certain statements and information contained in this presentation may relate to future expectations and other forward-looking statements that are based on management's current views and assumptions and involve known and unknown risks and uncertainties. In addition to statements which are forward-looking by reason of context, including without limitation, statements referring to risk limitations, operational profitability, financial strength, performance targets, profitable growth opportunities, and risk adequate pricing, as well as the words “may, will, should, expects, plans, intends, anticipates, believes, estimates, predicts, or continue”, “potential, future, or further”, and similar expressions identify forward-looking statements. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions which could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These include, among other factors, changing business or other market conditions and the prospects for growth anticipated by the Company's management. These and other factors could adversely affect the outcome and financial effects of the plans and events described herein. Statements contained in this presentation regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. The Company does not undertake any obligation to update or revise any statements contained in this presentation, whether as a result of new information, future events or otherwise. In particular, you should not place undue reliance on forward-looking statements, which speak only as of the date of this presentation.
Agenda

- Introduction
 - Chemistry
 - GENIOSIL® SMP product line
- Formulating
- Manufacturing
- Performance in end-user products
What are Silane-Modified Polymer (SMP) Hybrids

SILICONES
- UV resistant
- high elasticity

POLYURETHANES
- paintable
- good mechanical properties

SMP HYBRIDS
- easy processing
- broad adhesion profile

ALPHA SMP HYBRIDS
- fast & reliable curing
- tin free formulations
- long shelf-life
Agenda

Introduction

Chemistry

GENIOSIL® SMP product line

Formulating

Manufacturing

Performance in end-user products
Chemistry of SMP Hybrid Polymers
1. modified silicones (MS)

Traditional “MODIFIED SILICONES”

- low viscosities
- good stability of the polymers
- broad adhesion profile

- low functionality
- very low reactivity, tackiness
- formulations very sensitive to moisture of fillers
- shelf-life limited
- limited mechanical properties
- tin catalyst needed
Chemistry of SMP Hybrid Polymers
2. silane-terminated polyurethanes (SPUR/STP-U) (method 1)
Chemistry of SMP Hybrid Polymers
2. silane-terminated polyurethanes (SPUR/STP-U) (method 2)

Traditional SILANE-TERMINATED POLYURETHANES (SPUR)

- good reactivity
- good crosslinking for improved elasticity
- broad adhesion profile
- higher strength

• very high viscosity (most polymers need plasticizers)
• sensitive to moisture of fillers
• critical towards crosslinking upon storage (faster skinning)
• limited possibilities in tin-free catalysis
Silane-Modified Polymers (SMP) – Combining the Best of Silicone & Organic Polymers

International Silicone Conference – May 17, 2016
Michael Austerberry, PhD – Wacker Chemical Corporation

Low viscosity of silane-terminated polyethers

- easier handling in production
- better workability in formulations
- plasticizer free formulations
- high filler loading
- less scrapped material
- easier to gun
Chemistry of Hybrid Polymers
3. Silane-Terminated Polyethers (STP-E)

SILANE-TERMINATED POLYETHERS (STP-E)

Polymer OH + O=C=N \[\text{isocyanatoalkylalkoxysilanes}\] \[\text{urethane group}\]

<table>
<thead>
<tr>
<th>α</th>
<th>n = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits α & γ:</td>
<td></td>
</tr>
<tr>
<td>• 100 % functionality</td>
<td></td>
</tr>
<tr>
<td>• Tack-free curing</td>
<td></td>
</tr>
<tr>
<td>• Higher strength</td>
<td></td>
</tr>
<tr>
<td>• Low polymer content yet high performance</td>
<td></td>
</tr>
<tr>
<td>• Cost-efficient compounding</td>
<td></td>
</tr>
<tr>
<td>• Long shelf-life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γ</th>
<th>n = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional benefits α:</td>
<td></td>
</tr>
<tr>
<td>• Very high reactivity & fast strength-build-up</td>
<td></td>
</tr>
<tr>
<td>• Improved mechanical properties</td>
<td></td>
</tr>
<tr>
<td>• Crystal clear formulations</td>
<td></td>
</tr>
<tr>
<td>• Tin-free curing</td>
<td></td>
</tr>
</tbody>
</table>

| Additional benefits γ: |
| • Trimethoxy reaction → faster than MS |
| • Good recovery → sealants |
Rate of skin forming time of different endcapped SMP polymers

α-STP-E

γ-STP-E
Agenda

- Introduction
- Chemistry
 - GENIOSIL® SMP product line
- Formulating
- Manufacturing
- Performance in end-user products
The GENIOSIL® “toolbox” of polymers provides many options

- **GENIOSIL® XT**
 - Polymer range for very strong and elastic adhesives and coatings

- **GENIOSIL® XB**
 - Polymer range for strong and hard adhesives and coatings

- **GENIOSIL® STP-E**
 - Standard polymer range for elastic adhesives & sealants

- **GENIOSIL® WP**
 - Polymer range for waterproofing liquid membranes

- **GENIOSIL® XM**
 - Polymer range for adhesion and elongation

- Most important of all – all polymers can be blended to achieve state-of-the-art products
Agenda

Introduction

Chemistry

GENIOSIL® SMP product line

Formulating

Manufacturing

Performance in end-user products
Compounding with GENIOSIL® SMP’s

<table>
<thead>
<tr>
<th>Typical One-Component Formulation and Compounding Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 40% silane-modified polymer</td>
</tr>
<tr>
<td>10 - 20% plasticizer</td>
</tr>
<tr>
<td>1 - 2% water scavenger</td>
</tr>
<tr>
<td>40 - 60% fillers, typically calcium carbonates</td>
</tr>
<tr>
<td>2 - 4% pyrogenic silica</td>
</tr>
<tr>
<td>1% stabilizer package</td>
</tr>
<tr>
<td>0.1 - 1% catalyst/adhesion = Aminosilane</td>
</tr>
</tbody>
</table>

- **pre-mix liquids**
- **disperse solids homogenously**
- **activate and evacuate bubbles**

Compounding Steps:
- screening recipe
- scale-up in lab
- transfer to production
Calcium carbonate selection impacts various properties

<table>
<thead>
<tr>
<th>Calcium Carbonate Type</th>
<th>Shear Strength</th>
<th>Rheology/Body</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>GCC</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>PCC</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

GC = Ground Calcium Carbonate | GCC = Ground Coated Calcium Carbonate | PCC = Precipitated Coated Calcium Carbonate
Influence of formulation by plasticizers

- Shore hardness
- Viscosity
- Adhesion
- Through cure
- Skin formation time

![Graph showing elongation at break and viscosity changes with different plasticizers]
Pyrogenic Silica impact on mechanics

<table>
<thead>
<tr>
<th>HDK</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET</td>
<td>Rheology/Body</td>
</tr>
<tr>
<td>QTY</td>
<td>Tensile Strength</td>
</tr>
<tr>
<td>BET</td>
<td>Elasticity</td>
</tr>
</tbody>
</table>
Stabilizer impact on product stability

<table>
<thead>
<tr>
<th>Stabilizer</th>
<th>Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant</td>
<td>Temperature</td>
</tr>
<tr>
<td>UV-Absorber</td>
<td>Radiation</td>
</tr>
<tr>
<td>HALS*</td>
<td>Temperature & Radiation</td>
</tr>
</tbody>
</table>

* Hindered Amine Light Stabilizers
α-Effect: fast without special catalysts

Polymers cured with different catalytic systems

Skin-formation-time (23°C/50 % r.h.)

- **Benefits α-effect:**
 - no tin-catalyst required
 - easy formulation
 - improved storage stability
 - no degradation via secondary reactions with tin

GENIOSIL® GF 96 – Aminopropyltrimethoxysilane
DBTL – Dibutyltin-dilaurate
Agenda

- Introduction
- Chemistry
- GENIOSIL® SMP product line
- Formulating
- Manufacturing
 - Performance in end-user products
Formulating approach with GENIOSIL® SMP

- Step 1: Charge mixing vessel
- Step 2: Mixing

Compounding Benefits at a Glance
- No heat activation in vessel
- No pre-drying of fillers
- No moisture monitoring during mixing
- No specific compounding parameters
- No special raw materials
- No hazardous ingredients

Fast and Easy Production Process

Total time is 1-2 hours before filling step
Agenda

- Introduction
- Chemistry
- GENIOSIL® SMP product line
- Formulating
- Manufacturing

- Performance in end-user products
SMP are capable of being formulated with performance from low modulus sealants to high performance adhesives.
GENIOSIL® SMP
The Bridge Between Silicones and Polyurethanes
Thank you for your attention!